Unisys Corporation 4700 Boston Way Lanham MD 20706

Telephone 301 731 8600

UNISYS

DATE:

July 3, 1995

TO:

J. Lohr/311

FROM:

K. Sahu/300.1

SUBJECT: Radiation Report on: SE5521

Project:

CASSINI/CIRS

Control #:

11824

Job #:

EE56097

Project part #:

5962-9087901MVH

cc: B. Posey/300.1 A. Sharma/311 OFA Library/300.1

PPM-95-162

A radiation evaluation was performed on SE552! (Linear LVDT Signal Conditioner) to determine the total dose tolerance of these parts. A brief summary of the test results is provided below. For detailed information, refer to Tables I through IV and Figure 1.

The total dose testing was performed using a Co⁶⁰ gamma ray source. During the radiation testing, eight parts were irradiated under bias (see Figure 1 for bias configuration) and two parts were used as control samples. The total dose radiation levels were 5, 10, 20, 30, 50, 75 and 100 krads. The dose rate was between 0.29 and 1.52 krads/hour (see Table II for radiation schedule). After the 100 krad exposure, parts were annealed at 25°C for 168 hours, after which the parts were annealed at 100°C for 168 hours. After each radiation exposure and annealing step, parts were electrically tested according to the test conditions and the specification limits.

During initial (pre-rad) measurements, S/N 53 and 58 (control samples) fell below the minimum specification limit of -50.00 nA for IIOS_0V, with readings of -54.44 and -50.32 nA, respectively. All other parts passed all initial electrical tests.

After the 5 krad irradiation, all irradiated parts fell below the minimum specification limit for IIOS_0V, with readings ranging from -142.2 to -50.28 nA. In addition, S/N 56 exceeded the maximum specification limit of 2.525 V for VREF/2 @ 5V, with a reading of 2.531 V. All other irradiated parts passed all electrical tests at this level.

After the 10 krad irradiation, the same degradation was seen in IIOS_0V, with readings ranging from -273.0 to -50.33 nA. All irradiated parts exceeded the maximum specification limit for VREF/2 @ 5V, with readings ranging from 2.527 to 2.537 V. S/N 50, 51, 54, 55, 56, 57 and 59 also fell below the minimum specification limit of -500.0 nA for P_IIB_0V, with readings ranging from -604.3 to -553.0 nA.

After the 20 krad irradiation, the same degradation was seen in IIOS_0V, with readings ranging from -511.5 to -50.07 nA. All irradiated parts continued to exceed the maximum specification limit for VREF/2 @ 5V, with readings ranging from 2.540 to 2.552 V. The same parts fell below the minimum specification limit for P_IIB_0V, with readings ranging from -1132 to -113.0 nA. In addition, all irradiated parts fell below the minimum specification limit of -500.0 nA for N_IIB_0V and I DEMOD, with readings ranging from -620.7 to -521.8 and -820.5 to -690.6 nA, respectively.

After the 30 krad irradiation, the same degradation was seen in all the above parameters, with slightly increasing values.

The term rads, as used in this document, means rads(silicon). All radiation levels cited are cumulative.

These are manufacturer's pre-irradiation data specification limits. No post-irradiation limits were provided by the manufacturer at the time these tests were performed.

C:\REPORTS\269,DOC

After the 50 krad irradiation, the same degradation was seen in all the above parameters, with slightly increasing values. In addition, all irradiated parts exceeded the maximum specification limit of 5.050 V for VREF/2 @ 10V, with readings ranging from 5.055 to 5.087 V, and fell below the minimum specification limit of 100.0 V/mV for +AOL and -AOL, with readings ranging from 54.6 to 83.4 and 55.6 to 87.4 V/mV, respectively.

After the 75 krad irradiation, the same degradation was seen in all the above parameters, with slightly increasing values.

After the 100 krad irradiation, the same degradation was seen in all the above parameters, with increasing values, for the same parts. All irradiated parts fell below the minimum specification limit of -500.0 nA for I LVDT, with readings ranging from --608.1 to -524.7 nA. In addition, S/N 55 exceeded the maximum specification limit of 5.000% for P_OSC THD and P_OSC THD 300, with readings of 5.343 and 5.333%, respectively.

After annealing for 168 hours at 25°C, all irradiated parts read within specification limits for I LVDT, P_OSC THD and P_OSC THD 300. No other recovery was observed.

After annealing for 168 hours at 100°C, no rebound effects were observed.

Table IV provides a summary of the mean and standard deviation values for each parameter after each irradiation exposure and annealing step.

Any further details about this evaluation can be obtained upon request. If you have any questions, please call me at (301) 731-8954.

ADVISORY ON THE USE OF THIS DOCUMENT

The information contained in this document has been developed solely for the purpose of providing general guidance to employees of the Goddard Space Flight Center (GSFC). This document may be distributed outside GSFC only as a courtesy to other government agencies and contractors. Any distribution of this document, or application or use of the information contained herein, is expressly conditional upon, and is subject to, the following understandings and limitations:

- (a) The information was developed for general guidance only and is subject to change at any time;
- (b) The information was developed under unique GSFC laboratory conditions which may differ substantially from outside conditions;
- (c) GSFC does not warrant the accuracy of the information when applied or used under other than unique GSFC laboratory conditions;
- (d) The information should not be construed as a representation of product performance by either GSFC or the manufacturer;
- (e) Neither the United States government nor any person acting on behalf of the United States government assumes any liability resulting from the application or use of the information.

Figure 1. Radiation Bias Circuit for SE5521

C:\REPORTS\269.DOC

TABLE I. Part Information

Generic Part Number:

SE5521*

CASSINI/CIRS Part Number

5962-9087901MVH

CASSINI/CIRS Control Number:

11824

Charge Number:

EE56097

Manufacturer:

Signetics

Lot Date Code (LDC):

9346

_ . _ .

,,,,

Quantity Tested:

10

Scrial Number of Control Samples:

53, 58

Serial Numbers of Radiation Samples:

50, 51, 52, 54, 55, 56, 57, 59

Part Function:

Linear LVDT Signal Conditioner

Part Technology:

Bipolar

Package Style:

18-pin DIP

Test Equipment:

A540

Engineer:

T. Mondy

^{*} No radiation tolerance/hardness was guaranteed by the manufacturer for this part.

C:\REPORTS\269.DOC

TABLE II. Radiation Schedule for SE5521

EVENT	
1) INITIAL ELECTRICAL MEASUREMENTS	
2) 5 KRAD IRRADIATION (0.30 KRADS/HOUR)POST-5 KRAD ELECTRICAL MEASUREMENT	
POST-5 KRAD ELECTRICAL MEASUREMENT.	
3) 10 KRAD IRRADIATION (0.29 KRADS/HOUR)	06/07/9:
THE THE STATE OF T	
4) 20 KRAD IRRADIATION (0.61 KRADS/HOUR)	0.5 (0.0 (0.5)
POST-20 KRAD ELECTRICAL MEASUREMENT.	07.00.00
5) 30 KRAD IRRADIATION (0.16 KRADS/HOUR)	06/00/04
POST-30 KRAD ELECTRICAL MEASUREMENT	
6) 50 KRAD IRRADIATION (1.21 KRADS/HOUR)	
POST-50 KRAD ELECTRICAL MEASUREMENT	06/13/95
7) 75 KRAD IRRADIATION (1.56 KRADS/HOUR) POST-75 KRAD ELECTRICAL MEASUREMENT	06/13/95
The state of the s	06/14/95
8) 100 KRAD IRRADIATION (1.52 KRADS/HOUR) POST-100 KRAD ELECTRICAL MEASUREMENT	0.611.4/0.6
POST-100 KRAD ELECTRICAL MEASUREMENT	06/14/95
9) 168-HOUR ANNEALING @ 25°C	
POST-168 HOUR ANNEAL ELECTRICAL MEASUREMENT	06/22/05
10) 168-HOUR ANNEALING @ 100°C	
POST-168 HOUR ANNEAL ELECTRICAL MEASUREMENT	

PARTS WERE IRRADIATED AND ANNEALED UNDER BIAS; SEE FIGURE 1.

C:\REPORTS\269_DOC

Table III. Electrical Characteristics of SE5521

Unless Otherwise Specified: $T_A = 25^{\circ}C$, +Vcc = 10.0V, -Vcc = 0.0, $V_{REF} = 10.0V$, $RT = 18K\Omega$, CT = 0.047 F

TEST NAME	SYMBOL	$\frac{1A - 25 \text{ C}, + \text{Vcc} = 10.0 \text{ V}, -\text{Vcc} = 0.0, \text{ V}_{\text{REF}} = 10.0 \text{ V}, \text{ RT} = 18 \text{K}\Omega, \text{ CT} = 10.0 \text{ CONDITIONS}$								
<u></u>			CONDITIONS LIP							
		REFERENCE SECTION	I WILK	MAX						
Plus Icc	I_{7}			 _						
IREF	I _{REF}		<u> </u>	18.0mA						
VREF/2 @ 10V	$\overline{V_{\mathbb{R}^2}}$	$V_{\rm REF} = 10.0 { m V}$		8.00mA						
VREF/2 @ 5V	V_{R2}	$V_{Ref} = 5.0V$	4.950V	5.050V						
		AUXILIARY AMPLIFIER SECTION	2.475V	2.525V						
VOS @ OV	V _{IO}	-Vec= 10 0V V - 0V COLD VOTE								
V _{OS} @ 5V	VIO	$-Vcc = -10.0V, V_{OUT} = 0V (SEE NOTE: 1)$ $-Vcc = -10.0V, V_{OUT} = 5.0V (SEE NOTE: 1)$	-5.0mV	5.0mV						
P_IIB @ 0V	+I _{IB}	-Vcc= -10.0V, V _{OUT} = 5.0V (SEE NOTE : I)	-5.0mV	5.0mV						
N_MB@0V	-I _{IR}	-Vcc= -10.0V, V _{OUT} = 0V (SEE NOTE: 1)	-500.0nA	500.0nA						
I DEMOD		-Vcc=-10.0V, $V_{OUT} = 0V$ (SEE NOTE: I)	-500,0nA	500.0nA						
I LVDT	Iγg	-Vcc= -10.0V, Vour = 0V (SEE NOTE: 1)	-500.0nA	500.0nA						
HOS @ 0V	Ire	$-Vcc=-10.0V, V_{OUT}=0V (SEE NOTE: I)$	-500.0nA	500.0nA						
+VOUT SWING	I _{IO}	$-Vcc=-10.0V, V_{OUr}=0V (SEE NOTE: 1)$	-50.0nA	50.0nA						
-VOUT SWING		-Vcc=-10.0V, R_L = 10K Ω (SEE NOTE: 2)	7.00V							
+AOL V/mV	Vo	-Vcc= -10.0V, R_L = 10K Ω (SEE NOTE: 2)		-7.00V						
-AOL V/mV	A _v	-Vec= -10.0V, $R_L = 10K\Omega(SEE\ NOTE: 2)$	100V/mV							
Plus ISC	Av	-Vcc= -10.0V, R_L = 10K Ω (SEE NOTE: 2)	100V/mV							
MINUS ISC		-Vcc≈ -10.0V (SEE NOTE: 2)		100mA						
MINUS ISC		-Vcc= -10.0V (SEE NOTE: 2)	-100mA							
P. OCC TUD		DEMODULATOR SECTION	·—-							
P OSC THD	<u></u>	(SEE NOTE: 3)		5,0%						
N OSC THD		(SEE NOTE: 3)		5.0%						
P OSC THD 300	$R_{\rm L}$			5.0%						
N OSC THD 300	R _L	· · · · · · · · · · · · · · · · · · ·	·	5.0%						
DEMOD Lin	ΔL	V _{in} = 5Vpk-pk @ 1KHz	<u></u>	0.1 %FS						

TABLE IV: Summary of Electrical Measurements after Total Dose Exposures and Annealing for SE5521/1

Tes	t		Spec.]		Initial		Total Dose Exposure (krads) Annealing																	
#	Parameters	Units	•]		1	5 .	10		20		30		50		75		100		168 brs@25°C			
1	Plus Icc	T mA	0	18.000	8.65	sd	mean	sd	mean		meno	*d	Měž (n	sd	mean	sd	mean	sd	mean	s d	Blean	sd	mean	_ sq
2	IREF	mA	10	8.000	40.000	.39	8.38	.39	8.15	.39	7.75	.37	7.74	_39	6.76	.33	7,01	.33	6.92	.32	7.32	.34	8,07	.38
3	VREF/2 @ 10V	T v	4.950		5.51	.03	5.51	.02	5.52	.03	5.54	.02	5.54	.02	5.61	.03	5.52	.03	5.51	.02	5.47	.03	5.34	.20
4	VREF/2 @ 5V	†÷	2.475	2.525	5.01 2.51	.01	5.08	.18	5.03	.01	5.04	.01	5.04	.01	5.07	.01	5.07	.01	5,07	.01	5.06	.02	5.02	.01
5	VOS @ OV	mv	-5.00	5.00		0	2.52	10.	2.53	0	2.55	0	2.55	_0_	2.58	0	2.58	_0_	2.58	.0 1	2.57	.01	2.52	.01
	VOS @ 5V	mV	-5.00	5.00	0.11	.34	0.20	.36	0.29	.37	0.48	_39	0.52	.38	125	.46	1.10	.42	1.26	.44	0.82	.37	0.32	.34
	P IIB OV	nA	-500.0	 	-96.5	.34	0.19	36	0.28	_37	0.46	.3B	0.50	.38	1.20	.46	1.05	.42	1.21	.43	0.78	.37	0.31	.33
	N IIB OV	nA	1	500.0	-90.5 -41.3	6.0	301		-56 t	32	-1062	61	-1000	71	-1000	06_	-2000	106	-2000	119	-1 00 0	17	-392	44
9	I DEMOD	nA.	-500.0	!	-69.9	37	-166	7.2	-308	18	+582	34	-600	39	-800	.13	-1000	58	-100 0	65	-8 00	9.9	-223	27
10	LVDT	пА	-500.0		-25.8	1.5	-218	9.2	-406	23	-770	44	-800	51	-1000	.02	-1000	77	-2000	86	-1000	11	-284	32
11	IIOS OV	nA.	-50.00		-42.8	2.5	-80.0	3.3	-149	8.4	-282	16	-300	19	-400	.02	-500	28_	-60 0	31	-400	4.1	-104	12
12	+VOUT SWING	v	7.00	30.00	9.21	.01	-136	5.7	-253	14	-480	27	-500	32	-600	.09	-900	48	-1000	54	-600	6.9	-177	20
	-VOUT SWING	v		-7.00	-9.22	.01	9.21	.01	9.21	.01	9.20	<u> D</u>	9.20	0	9.20	_0	9.20	0	9.20	0	9.20	0	9.21	D
_	+AOL	V/mV	100.0	-7.00	441	21	-9.21 647	.01	-9.19	.01	-9.18	10.	-9.17	.01	-9.16	.01	-9.15	.01	-9.13	.02	-9.13	.03	-9.18	.02
15	-AOL	V/mV	100.0		372	19	2.30,000000	76	9955	18567	531	151	465	159	69.2	10	74.1	12	59.2	6.6	114	19	8435	13677
16	Plus ISC	mA	-100.0		-38.7	1.5	524 -36.6	49	1514	769	597	196	436	101	72.1	10	71.4	11	55.3	8.4	111	18	2627	1426
17	MINUS ISC	mA	-	100.0	35.6	1.6	35.0	1.5	343	1.4	-30.0	1.4	-29.7	1.5	-20.9	1.2	-21.7	1.4	-20,3	1.3	-24.3	1.4	-34,0	1.5
- 1	P_OSC THD	%	_	5.000	2.05	.35	2.21	1.5	35,0	1.5	35.6	1.4	35.8	1.5	35.8	1.5	35.3	1.4	35,3	1.5	36.5	1.5	35.3	1.4
	N_OSC THD	/	_	5.000	1.91	.33	2.03	.37	2.42	.36	2.84	.42	2.87	.42	4.27	.39	4.00	.42	4.35	.55	3.34	.37	10.0	4.5
	P OSC THD 300	%		5.000	2.06	.36		.37	2.23	_38	2.63	.39	2,64	.40	3.97	.38	3,74	.44	4.09	.52	3.12	.38	9.33	4.7
	N_OSC THD 300	%		5.900	1.91	.33	2.21 2.04	.37	2.40	.37	2.85	.39	2.85	.43	4.25	_38	4.00	.42	4.37	.54	3.35	.38	9.33	4.0
	DEMOD Linearity	%	- ∵		0.07	.02	0.05	.34	2.21	.37	2.59	.39	2.61	.40	3.96	.39	3.71	.42	4.05	.51	3.05	.37	8,99	4.7
Vote				02 GG	U,U,	.02	(N'N')	.03	-0.01	.03	-0.07	.03	-0.06	.03	0.14	.02	0.01	.02	0.04	.03	-0.02	.03	0.09	.03

Radiation-sensitive parameters: IIOS_0V, VREF/2 @ 5V, P_IIB_0V, N_IIB_0V, I DEMOD, VREF/2 @ 10V, +AOL, -AOL, I LVDT, P_OSC THD and P_OSC THD 300.

^{1/} The mean and standard deviation values were calculated over the eight parts irradiated in this testing. The control samples remained constant throughout the testing and are not included in this table.

^{2/} These are manufacturer's pre-irradiation data sheet specification limits. No post-irradiation limits were provided by the manufacturer at the time these tests were performed.